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Abstract. The equivalence between the Hamiltonians representing nonlinear optical 
phenomena and N two-level atoms interacting via the electromagnetic field is exploited to 
find a solution to a parametric amplifier, a frequency converter and to the problems of 
Brillouin and Raman scattering. The n-photon probability and average number of photons 
as a function of time are obtained for all these cases. The results of the parametric amplifier 
can be readily applied to the Brillouin and Raman effects. In particular the results obtained 
for spontaneous fluorescence are applicable to the Stokes line of the stimulated Raman 
effect. Other nonlinear effects are discussed in the context of the present theory. 

1. Introduction 

This paper deals with the basic phenomena of the coupling between three light waves at 
three different frequencies, the coupling taking place in a nonlinear crystal. A number 
of nonlinear crystals are currently known, such as ADP, KDP, ADA, CDA, LiNbOs 
and many others, each one having a unique frequency range for efficient second- 
harmonic generation or parametric amplification. 

The first observation of nonlinear optical effects was made by Franken et a1 (1961) 
when they obtained optical second-harmonic generation using a ruby laser. In the same 
year Kaiser and Garret (1961) observed a nonlinear absorption due to a two-photon 
process, also using a ruby laser. 

In the early and middle nineteen sixties nonlinear optical effects were rapidly being 
discovered. 

The theoretical treatment of nonlinear optical phenomena was developed by 
Armstrong et a / (  1962) assuming that the fields behave classically. 

There have been several authors who approached the parametric amplification and 
frequency conversion problem, using quantum mechanical models (Louisell et a1 196 1, 
Louisell 1964, Mollow and Glauber 1967, Graham and Haken 1968a, b, Tucker and 
Walls 1969). In these models the parametric approximation is used, where the pump is 
assumed to behave classically with constant amplitude. The depletion of the pump field 
is therefore neglected. We shall see that these approximations are valid only for short 
times when the scaled time r << (2R)-”’. These assumptions are avoided in the present 
work. 

The model for parametric amplification and frequency conversion is presented in 8 2 
and a formal analogy is established between the models for the atomic system coupled 
with electromagnetic radiation and the parametric amplifier. 

Section 3 is devoted to the nonlinear spontaneous fluorescence process and stimu- 
lated parametric amplification. In the case of spontaneous fluorescence the solution 
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2234 M Orszag 

found in paper I (Orszag 1979a) can be used directly, provided the formal cor- 
respondence between the parameters of the atomic system and the nonlinear process is 
made. A solution for the time-dependent average number of idler photons is found. 

In the case of stimulated parametric amplification a mathematical procedure is 
developed to find the n-photon probability distribution and the time-dependent 
average number of idler photons. The technique used here is similar to the one used in 
paper I. 

Section 4 deals with frequency converters and 0 5 with other nonlinear optical 
processes, such as stimulated Raman scattering, the inverse Raman effect, Brillouin 
scattering and super-radiance. 

2. Themodel 

We consider three electromagnetic fields coupled through a nonlinear dielectric; the 
three fields are labelled by 1, 2 and 3 such that 

w 1 =  w2 + W3, (2.1) 

which is the energy conservation condition, and also 

K1= K2 + K3, (2.2) 

If a l ,  a2, a3 denote the annihilation operators of the three fields, the well known 
corresponding to the conservation of momentum or phase matching condition. 

boson commutation rules may be written 

[ai, a ; ]  = 8. .  9, i, j = 1,2 ,3 .  (2.3) 

In the case of parametric amplification, a pump or laser field at frequency w1 combines 
with a signal field at frequency w 2  to generate an idler field at the difference frequency 
( w l - w 2 ) .  (The laser frequency is w 1  and the signal frequency wz.) The process is 
described graphically in figure 1 (Yariv 1975, Yariv and Pearson 1969). The transition 
in question can be described quantum mechanically as follows: 

Inl, m, n3)-+ln1-1,n2+19 n3+1), 
where a laser photon is annihilated and a photon is created both in the signal and idler 
fields. 

However, in frequency conversion the pump field at frequency w3 combines with the 
signal frequency at frequency w2 to generate the idler field at the sum frequency 
(w2  + w3). This process is displayed graphically in figure 2. The corresponding quantum 

Pump I w, 1 

Figure 1. The parametric amplifier; a pump or-laser field at frequency w 1  combines with a 
signal field at frequency w 2  producing an idler field at frequency w j  = w1 - w z .  The 
requirement of conservation of momentum is K1 = K2+ KP. 
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w3 (pump) 

\ 
i 9 (signal) 

Figure 2. The frequency up-converter; a pump field ( 0 3 )  combines with asignal field (w2)  to 
generate an idler field at the sum frequency (01 = 0 2  +oj). Conservation of momentum is 
required. 

transition is 

Inl, n2, n3>+ In1 + 1, n z -  1 , 1 1 3 -  1). 

The basic Hamiltonian describing both the frequency converter and the parametric 
amplifier is (Walls and Barakat 1970, Louise11 1964) 

H = h w l ~  + h w 2 ~  + h w 3 ~  la3 + hK (U la ;U 3 + U T u ~ u ~ ) .  (2.4) 

In the case of parametric amplification al  represents the pump mode, a2 the signal 
mode and a3 the idler. However, if the Hamiltonian (2.4) describes a frequency 
converter, u1 is the idler, a2 the signal mode and u3 the pump. In a given experimental 
configuration one of the processes will be eliminated because of the phase matching 
condition. 

It has been shown that the Hamiltonian (2.4) can also describe a' system of N 
two-level atoms interacting via the radiation field (Bonifacio and Preparata 1970, 
Bonifacio and Masserini 1968). The Hamiltonian of the N two-level system is 

H = hwa'u +h~Rs+hK(aR'+a 'R- )  (2.5) 

where R3, R' and R- are the z component, raising and lowering angular momentum 
operators respectively and a, a+ are the annihilation and creation operators of the field. 
The connection between the Hamiltonians (2.4) and (2.5) can be readily established by 
defining 

R' = u ~ u : ,  R -  = a i a i .  (2.6) 

Notice that here we are presenting a formal equivalence between the Hamiltonians of 
the parametric amplifier and frequency converter (equation (2.4)) and the Hamiltonian 
corresponding to an N two-level system in the rotating-wave approximation (equation 
(2.5)). Since we shall later use the results obtained in the restricted rotating-wave 
approximation, an error is introduced and the present analysis is only approximate. A 
critical study of this approximation is presented in the final section. 

From the well known rules of commutation for R' and R- ,  R3  must be defined as 

(2.7) 

and if we interpret a+u as a f a 3  the two Hamiltonians are identical and any solution for 
the two-level system can be applied directly to the frequency converter and parametric 
amplifier (Walls and Barakat 1970). The operators a:ul and uta2  are interpreted as 
the effective populations of the upper and lower levels of the atoms respectively. 

R -1 
3 - 2b;a l -  a:az), 
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Consistently with equations (2.6) and (2.7) we can write 

R +(U :U 1 + U f ~ 2 ) .  (2.8) 

Using as working states for our Hilbert space the product state of Dicke's and In) states, 

Im>ln>, (2.9) 

and since the operators N = u+u + R3 and R 2  are conserved, we will rely on two good 
quantum numbers R and M = n + m, which can be written as 

(2.10) 

where M and R ( R  + 1) are the eigenvalues of N and R Z  respectively and n l ,  n2 and n3 
are the initial number of photons of the three fields. 

3. The parametric amplifier 

3.1. Spontaneous emission 

This is the case where there are initially nl pump photons and no signal photons (nz = 0). 
We will also assume that the initial number of idler photons is also zero (n3 = 0). From 
equations (2.10) it is clear that 

M = R = + ~ ~ ,  (3.1) 
and 

In terms of the two-level atom the case of the parametric amplifier for spontaneous 
emission corresponds to the atomic system initially prepared in the state of complete 
inversion (for the two-level system, it corresponds to spontaneous emission, since 
n ( 0 )  = n3 = 0 ) .  This problem was solved exactly by the author (paper I), valid for all 
times (Orszag 1979a). The solution for the n-photon probability is 

Ip(n, 7)12 = [ fi (i)(2R - i + 1) ( n  !)-32-4R 
i = l  3 

Equation (3.3) represents the n-photon emission probability as a function of the scaled 
time r = Kt. 

A time-dependent average number of photons is simply 



Nonlinear optical phenomena 2237 

An APL program was written to calculate the n-photon probability and the average 
number of photons. Some of the numerical results are shown in figures 3, 4 and 5. 
Figure 3 shows n ( 7 )  (or n3(7)) when the parameters are 

M = R = ; ,  nl = 3, nz = 0. 

For long times 

n d 7 )  -* nmax = 3, (3.5) 
corresponding to a complete depletion of the pump. Normally this limit is not achieved 
experimentally, since it requires a long interaction time, or equivalently, a very large 
nonlinear medium. Figures 4 and 5 show a similar behaviour. Figure 4 has parameters 

M = R = ~ ,  n l = 9 ,  n2 = 0,  

T 

Figare 3. Number of idler photons versus time T for spontaneous fluorescence. The 
parameters are R = M = 1.5, n (0) = 0 or nl = 3 (pump), n2 = 0 (signal), n3 = 0 (idler). 

7 

Figure 4. As figure 3 for R = M = 4.5 and n ( 0 )  = 0 or nl = 9 (pump), n2 = 0 (signal), n3 = 0 
(idler). 
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7 

Figure 5. As figure 3 for R = M = 7.5, n(0) = 0 or n l  = 15 (pump), n2 = 0 (signal), n3 = 0 
(idler). 

and figure 5 
15 M = R = i - ,  n1 = 15, nz = 0. 

Finally, the spontaneous emission case, also termed spontaneous parametric 
fluorescence, is a typical quantum mechanical effect which cannot be described in 
semiclassical terms. Its two-level atomic counterpart corresponds, as mentioned above, 
to initial full inversion. The radiation emitted from the atoms is of a purely quantum 
nature. 

3.2. Stimulated emission 

In this case both n 1 f  0 and n2 # 0. The special case we are going to solve is: 

nl = n2; n3 = 0, 
or 

M = O ;  R = nl .  

Using equations (2.10), it is easy to verify that 

n1(7) = 1 1 1  - n 3 ( ~ ) ,  n 2 ( ~ )  = nl + n3(7). (3.8) 
In the two-level system language, the case M = 0, R = nl corresponds to a system of 
two-level atoms initially prepared in the super-radiant state (spontaneous emission, 
since n3 = 0). 

The system, therefore, is expected to behave semiclassically and the quantum 
features or corrections should have little effect. As in paper I, we will use Dicke's model 
in the restricted rotating-wave approximation and p(n ,  T )  can be written as 

p ( n ,  ~ ) = ( n l ( M - n I  exp[-iT(a +a')(R'+R-)]IM)(O)exp[-iwlMr] (3.9) 
where 

r = Kt ,  w ~ = w / K .  
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Using the unscrambling theorems of Arecchi et a1 (1972) we can write 

and 

sinh k 

cosh k -kwz sinh k 

cosh k +ioz sinh k 

sinh k 
w -  - i k 

eo+R++w-R-+oZR, = 

where for our specific purpose 

w +  = U -  = -iT(a +a+), 

OZ =o, k = iT(a +a'). 

(3.10) 

(3.11) 

(3.12) 

Identifying each term of the matrices (3.10) and (3.11) and using (3.12), we obtain 

X+ = X- = -i tan T (  a + a +), 

x, =cos-* 7(u +a+), 
(3.13) 

and p(n, T )  can be written as 

p(n, T )  = exp(-iwlTM)(nI(M - nl exp(X+R+) exp[(ln XzIRJI exp[X-R-lIM)IO). 

Using the following properties of the angular momentum operators, 
(3.14) 

(R-)*IM)= fi [ ( R + M + l - s ) ( R - M + s ) l t l M - q ) ,  (3.15) 
s = l  

p(n, T )  can be written as 

(3.16) 

(3.17) 

(3.18) 

Since x + ,  x -  and xz  are functions only of the field operators, the summation over 4 
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contains only one term, the one satisfying 4 = n + r. Therefore, p ( n ,  T )  can be expressed 
as 

where 
10)(-i)2r+fl. (3.20) 

To derive equation (3.19), 4 = n + r and equation (3.18) were used. The calculation of 
the n-photon probability amplitude has been reduced to the computation of Ano:  

A,o = (nl[sin T ( U  +u+)]~'+"[cos T ( U  + a')]n-2M~O)(-i)2r+". (3.21) 

Expanding the sine and cosine functions in terms of exponentials, and then expanding 
the binomials, we obtain 

+ Z ( n + r - M )  A,o=(nl[tan T ( U  + a ' ) ] 2 r c " [ ~ ~ ~ ~ ( a  + a  )I 

where 

Q = 2 i ~ ( s 1  + s z + M  - r - n). 
According to the Baker-Campbell-Hausdorff (BCH) formula (Wilcox 1967) we write 

(3.23) exp[a (a  + a +)I = exp[aa +]exp[aa ]exp[a '/2], 

and a straightforward calculation leads to 

(nlexp[a(a +a+)]10) = exp[a2/21((un/(n !I"~). (3.24) 

Substituting equation (3.24) into equation (3.22) and An0 in the n-photon probability 
amplitude (equation 3.20), we obtain 

Notice that in equation (3.25) we have replaced the CO for rm, in the upper limit of the 
summation over r. From the equation (3.16), we can see that (I,,.,= = M + R, therefore 
r,, = M + R - n. Since we expanded the cosine function inution (3.21), it was assumed 
that n 3 2M. This inequalipy valid for all times only if M s 0. Our particular interest is 
M = 0, for which the n-photon probability becomes 
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The average number of photons, which is also the number of idler photons at a 
frequency (w1-  wz), is 

The stimulated emission case can be applied to the following physical situations: 
(i) Parametric amplification, where a pump field at frequency w1 and with initial 

number of photons n1 interacts with a signal field at frequency w 2  with initial number of 
photons n2 and an idler field at frequency w1- w2 with initial number of photons zero. 

(ii) Since photons and phonons obey the same commutation rules, the parametric 
process solved in this section can also describe the interaction of a pump photon (ut), a 
signal photon ( w z )  and an idler phonon (w1- 0 2 ) .  This process describes Brillouin 
scattering if the phonon is a pressure wave (acoustic branch) or Raman scattering if the 
phonon corresponds to internal molecular rotation or vibration (optical branch). 

4. The frequency converter 

As outlined in the Introduction, the frequency converter can be dealt with using the 
same Hamiltonian as for the parametric amplifier, provided field 2 is interpreted as the 
pump, field 3 as the signal and field 1 as the idler. 

Assuming n1 initial photons at the sum frequency (nl # 0), we can write 

M = n3 + $(n 1 - n2), 

M # R ,  n ( O ) = n 3  # 0, (4.2) 

R = i (n l+  n2),  (4.1) 

which in terms of N two-level atoms, become 

which corresponds to the general case solved in paper I. However, the accuracy of the 
solution is only acceptable if we are dealing with a reasonably large number of atoms, or 
more precisely, M + R - n (0) 3. In the nonlinear optical language, this inequality can 
be written as n 2 3. If the latter condition is satisfied, then the general solution found in 
paper I (Orszag 1979a) can be readily used. 

5. Other nonlinear processes 

Besides the above nonlinear optical phenomena a number of effects can be dealt with by 
the present theory. Every one of these second-order nonlinear effects can be charac- 
terised by a set of constants nl, 112, n3 or equivalently, in terms of the two-level system 
notation, by the set M, R, n(0). 

When dealing with photons mixing at various frequencies, as in the parametric 
amplification and frequency conversion cases, the role of the nonlinear material is a 
passive one in the sense that the crystal only acts as a suitable material where the 
interaction takes place. 

There are other nonlinear phenomena in which the medium imposes characteristic 
frequencies when excited by a strong electromagnetic field. These characteristic 
frequencies are due to mechanical vibrations or rotations of molecules; the effect of this 
mechanical motion is modulation of the light wave. This is Raman scattering. 
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If the modulation is due to pressure waves or density changes in the medium 
(typically in a liquid like benzene), again interaction between a photon and a phonon 
takes place, producing shifts in the frequency of the outgoing light wave. This is 
Brillouin scattering. 

We chose to study in this section the following effects: 1. stimulated Raman 
scattering, 2. inverse Raman effect, 3. Brillouin effect and 4. super-radiance. In all 
these effects the medium plays an active role. In the first three, the operator u3 
represents a phonon ratheruh a photon. In the fourth (super-radiance) the interaction 
takes place between the atoms and the radiation field. 

5.1. Stimulated Raman scattering 

The mixing of mechanical and electromagnetic vibrations produces upward and 
downward shifts in the frequency of the outgoing radiation (anti-Stokes and Stokes 
processes respectively). 

(i) Stokes Process 
This process is described in figure 6 .  Since we wish to describe stimulated Raman 
scattering, where the electromagnetic field Zxcites a phonon, this case corresponds to 
the parameters n 2  = 113 = 0, n l  # 0 or M = R = i n l ,  n(0)  = 0. This case is formally 
identical to the case of spontaneous emission from a parametric amplifier, the only 
difference being that a2 is the annihilation operator of a phonon instead of a photon. 
Therefore the results of Q 3.1 can be applied here. 

Phonon (wi I / 
2 . j  

\ 
- 

\ 
Pump photon 

lw1) 

Idler photon 
( w 3 = w ,  - w 2 )  

Figure 6. Stokes process in Raman effect. This process is similar to the parametric amplifier 
except that here the signal field is a phonon (molecular rotation or vibration) rather than a 
photon. 

The anti-Stokes Raman process is similar to second harmonic generation. These 
two cases cannot be described accurately here. We shall shortly publish a solution for 
these two nonlinear effects. 

5.2. Inverse Raman effect 

The inverse Raman Stokes and anti-Stokes processes are shown in figures 7 and 8 
respectively. 

Let us assume that two light sources interact in a Raman active medium. If a pulsed 
laser and a cw laser are used, the medium displays a negative absorption or enhanced 
emission at the Stokes frequency w 3  = w 1  - a 2  (figure 7) and a reduced transmission 
at the anti-Stokes frequency w 1  = w2 +w3 (figure 8), having chosen a transparent 
medium at these frequencies (Baldwin 1974, Yariv 1975). 
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cw light source 
I w p  w,  - w 2 )  

Light pulse 
lw,) 

Figure 7. Inverse Raman effect, Stokes process. The cw light source at the Stokes 
frequency 0 3  = 01 - 02 displays an enhanced emission when passing through a Raman 
medium, the pump being a pulsed laser at frequency ol. This is due to the presence of 
phonons ( 0 2 )  in the material. 

/ 
cw light source 

Iw, 

Iw3=w, -w2 1 

Figure 8. Inverse Raman effect, anti-Stokes process. The light source shows an incre E j 
absorption at the anti-Stokes frequency (wl) in a normally optical transparent Raman active 
medium. Phonons are present and the pulsed laser is at the frequency u3 = w1 - w2.  

The parameters characterising these two effects are nl # 0, nz # 0, n3 # 0 or 

R = f ( n l  + nz) ,  ~ = n 3 + 3 ( n l - n 2 ) ,  n (0) = 123, (5.1) 

which means that in the two-level system language we are dealing with the most general 
case M # R, n (0) # 0. This case has been solved by the author in paper I (Orszag 1979a) 
for limited times. 

5.3. Brillouin scattering 

This differs from Raman scattering only in that we are dealing with phonons of the 
acoustic rather than the optical branch. A sound wave travels through the nonlinear 
material producing frequency shifts in the optical fields, these shifts being much smaller 
than Raman shifts. Although the coupling in Brillouin scagwng is with pressure waves 
rather than with the internal motions of molecules, the theoretical formalism is the same 
and the results found for Raman scattering are also applicable to Brillouin scattering. 

5.4. Super-radiance 

Dicke (1954) originally proposed that a collection of atoms can correlate themselves 
when suitably excited by an electromagnetic pulse (at optical frequency) and, using time 
dependent perturbation theory, found that they can emit a gigantic pulse proportional 
to the square of the number of atoms involved in the process. 
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Considerable effort has been devoted to the understanding of this effect since, 
although it is well known to the electrical engineer, the collective response of the atoms 
was surprising. 

Experiments have been performed to prove the existence of optical super-radiance 
(Compaan and Abello 1971, Shoemaker and Brewer 1972, Skribanowitz et a1 1973) 
but the issue has not yet been settled (see also Shen 1976). From the point of view of our 
formalism, the atomic system must be prepared initially in the super-radiant state, 
which corresponds to M = 0. The solution found in 0 3.2 corresponds exactly to this 
choice of parameters (R, M = 0, n (0) = 0). 

6. Discussion 

We shall now discuss some of the present results and, in particular, compare them with 
previous work. For the case of spontaneous fluorescence, and assuming an intense 
pump that behaves classically, one obtains (Yariv 1975) 

n3(r) = sinh ' ( 4 2 )  (6.1) 
where s in our notation is 

= 2 ~ ( ~ ~ ) ~ . ~ .  

Obviously n s ( t )  cannot grow indefinitely, and equation (6.1) is valid for short times. 

formula (6.1) is presented for times T = 0.1 and T = 0.2.  

either T or R. Its accuracy is good if 

In table 1 a comparison between the results derived in 0 3 and the approximate 

The table shows that the expression of equation (6.1) becomes worse as we increase 

(2R)O% << 1. (6.3) 
The general validity of the present theory will now be discussed. 

Table 1. A numerical comparison between the present theory for spontaneous fluorescence 
and the results assuming that the pump behaves classically, for T values 0.1 and 0.2. 
Agreement between the two theories is good provided r(2R)'lZ<< 1. In the case 
7(2R)'/' > 1, the semiclassical theory predicts an n3(r) which grows exponentially with 
time. 

Results of 8 3.1 for 
7 R n&) = ~ i n h ~ [ ~ ( 2 R ) ' / ~ ]  n3(7)  

0.5 
1.0 
1.5 

0.1 2.0 
4.5 
5.0 

0.5 
1.0 
1.5 

o.2 2 .0  
4.5 
5.0 

0~0100 
0.0197 
0.0299 
0.0405 
0.09273 
0.1024 

0.0405 
0,0823 
0,1239 
0.1687 
0.4053 
0.4570 

0.0099 
0.0196 
0.0291 
0.0384 
0.08121 
0.08903 

0.0384 
0.0739 
0,1059 
0.1339 
0.2157 
0.2232 
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From paper I (Orszag 1979a) we define the following operators: 

&Exact= exp{(-iwt)[A+a(a +U+)(R++R-)]} 

&RWA = [exp(-iwrA)l{exp[(-iwr)a (a + a +)(R + + 
&WA = [exp(-iwtA)l[exp(-iwt)(a~ + + U'R-)] (6.4) 

where a = K / w .  

have the following relations: 
We have also shown in paper I that in the case of the emission of one photon, we 

(1 J(M - 1 I &xactIM)lO) eiotM = a ~ 1 +  a CExact + . . . 

CExact = [ i ( ~ t ) ~ / 6 ] ( M  - ll(ll(a + 
CRRW,+, = [ i ( ~ t ) ~ / 6 ] ( M  - ll(ll(a + 

z?-)~)M)IO), 

+ I ? - ) ~ ~ M ) ~ O > ,  
CRwA = [ i ( ~ t ) ~ / 6 ] ( M  - ll(ll(~R'+a'R-)~IM)lO). (6.6) 

The equations (6.5) and (6.6) clearly indicate that the rotating-wave approximation 
model introduces an error with respect to the exact case of the order of (a)3 ,  while the 
restricted rotating-wave approximation is exact in this order. In this work, the formal 
analogy between the Hamiltonians (2.4) and (2.5) is exploited. However, the results 
using the RRWA are used, thus introducing an error of the order of (a)3 .  This is clear 
from equation (6.7) if we simply compare CRRWA and CRWA. As we can see from the 
above discussion, this theory is only approximate, the accuracy of the approximation 
being comparable with the accuracy of the standard rotating-wave approximation when 
solving the problem of N atoms interacting via the electromagnetic field. 

Finally, regarding the loss of unitarity of the time-evolution operator, we refer the 
reader to the discussion in paper I. The error is due to the use of the BCH identity when 
dealing with bound In) states (bound spectrum) and this error is of the order of 
(ff ) M + R - n ( o )  and it can be neglected in all the cases considered here. However, the cases 
of second-harmonic generation and the anti-Stokes Raman process correspond exactly 
to M + R - n(0) = 0 and the present theory cannot be used. These two cases will be 
dealt with in a separate publication. 
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